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Synthetic cyclic oligopeptides can depict reactive conformational
motifs of bioactive oligopeptidésand are thus intensively inves-
tigated as peptidomimetidaas pharmaceutically active low-
molecular weight analoguésr as artificial arrays with defined
nanostructure$. Synthetic routes to these target structures are
numerous, taking advantage of the highly developed techniques in
peptide synthesis.Due to the fact that these compounds are
macrocyclic polylactams, the fundamental restrictions in (thermal)
macrocyclization chemistry have to be considér&thotochemical
macrocyclizations constitute an alternative class of reactions which
often are controlled by the excited-state rather than ground-state
properties. Following our studies on the intramolecular photo-
decarboxylation ofw-phthalimido alkyl carboxylatésand its
intermolecular versichin agueous media, this concept was also

investigated as a general route to macrocyclic products (Scheme

1).10In fact, the synthesis of medium- and macrocyclic amites,
lactones? polyethers'! thioethers® as well as cycloalkynéswas
realized®®

Scheme 1. Photoinduced Electron Transfer Decarboxylation/
Cyclization Reaction of w-Phthalimido Alkylcarboxylates with
Divergent Linker Chains (L1, L2) And Spacer Functional Groups X
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To further explore the scope of this reaction and to develop a
flexible route to cyclopeptides using the photodecarboxylation/
cyclization protocol, we investigated a series of C-unprotected di-
and tripeptides activated by the N-terminal phthalimide functional-
ity. The basic concept is shown schematically for a cyclic peptide
incorporating a tripeptide motif in Scheme 2: a chromo-/electro-
phore which is N-terminal AAlinked to an oligopeptide chain
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acid (Auda). The photolyses & 300 nm) were performed in water/
acetone mixtures at initial pki values of 6-7. Analogous to that
in the Ala-Pro derivativé® protection of the primary amide group
restored the cyclization activity, and already the sarcosine substrate
Gly-Sar gave the six-membered lactam in 53% vyield. From these
first trials we suspected that a secondary amideoisapplicable
as primary functional group in the peptide tether due to the
hydrogen-bonding hypothesis!” Photochemical reactivity was,
however, recovered by using longer secondary spacer chains
(Scheme 3); the GlyAla couple gave solely the decarboxylation/
hydrogen transfer product, but longer amino acids as second
components also restored the cyclization activity. For example, the
Gly-eAca substrate gave the 10-membered product in 69% vyield.
Thus, hydrogen-bonding deactivation can be overwritten by using
the appropriate substitution pattern.

Another way to improve the photocyclization efficiency is to
increase of the chain lengths of the primary amino acid tether;
whereas th@Ala-Gly substrate gave only 24% of the corresponding

serves as excited-state electron acceptor and oxidizes the C-terminateven-membered lactam, tifidla-SAla couple gave the eight-

carboxylate group with subsequent extrusion ob@@d cyclization.

In preliminary studies we, however, did not succeed in cyclizing
the phthalimide substrate of the Gly-Gly dipeptidéndicating that
hydrogen bonding between the imido carbonyl groups and a
proximateamide NH might deactivate the electron-transfer reactiv-
ity and interfere with the cyclization step. When this hydrogen
bond was inhibited, as for exampleMphthaloyl Ala-Pro, photo-
cyclization occurred in moderate yieléfs.

As primary spacers AA unbranchee-amino acids were applied
with increasing (CH), spacer lengths af = 1, 2, 3, 5, 10, and 11.

As the C-terminal amino acid we used glycine, sarcosine (Sar),
[-alanine fAla), e-aminocaproic{Aca), and 11-aminoundecanoic
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membered lactam already in 32% yield, andd¢hea/3Ala substrate
resulted in the 11-membered lactam in 55% yi€ld.

The lactamd.a,b were characterized by X-ray structure analyses
(Figure 1). The producta from theAla/y-aminobutyric acid pair
(ring size: 9) has th&-amide configuration; in the larger rinth
(ring size: 10) from the GlyAca pair the amide configuration
switched toz.1°

Figure 1. Structures of the productsa,b in the crystal.
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Scheme 4 and is applied for more complex structures in ongoing work. These

H 9 preliminary results suffer from medium chemical yields due to
N‘JS
Pht=AA'-Gly-Gly ——— )(

substantial hydrolysis at high pH, a competing process which can
be suppressed using buffered aqueous conditfns.
pHipni¢ = 6-7 <\N’H\({) Acknowledgment. This research was supported by the Deutsche

-CO; 24-57% Forschungsgemeinschaft.

Supporting Information Available: Details of the photocyclization
0 reactions, NMR-spectroscopic data of selected photocyclization prod-
ﬁ_JS ucts, pH reaction profiles, and X-ray crystallographic datd@fand
H&Z*n 1b (PDF). An X-ray crystallographic file ofa (CIF). This material is
Pht=Gly-Gly-AA3 hv \ N NH available free of charge via the Internet at http://pubs.acs.org.
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